

ψηφιακήεληδα Όλα είναι δυνατά Επικερησιακό Πρόγραμμα "Ψηφιακή Σύγκημαη"

GRNET Cloud Center economics and Green IT case studies

Anastasios Zafeiropoulos (<u>tzafeir@grnet.gr</u>) Greek Research & Technology Network

Samos, 03 July 2012

Outline

- Driving forces for Green IT
- GRNET Data Centers Deployment and Cost
 - Cloud Computing Infrastructure
 - High Performance Computing Infrastructure
 - Design of a Green Data Center
- GRNET Green IT activities
 - ECONET project
 - Green GÉANT Team
 - □ GEN6 Smart energy meters in public schools
- □ GRNET environmental policy

Driving forces for Green IT

- There are two main motivations that drive the quest for "green" ICT:
 - the environmental one, which is related to the reduction
 of wastes, in order to impact on CO₂ emission;
 - the economical one, which stems from the reduction of operating costs (OPEX) of ICT services. How much is 2% of CO₂?

Gartner Group, Inc. (2007)

"The global information and communications technology (ICT) industry accounts for approximately 2 percent of global carbon dioxide (CO_2) emissions, a figure equivalent to aviation."

Note that the ICT sector raises much faster than aviation

Potential saving in energy consumption and costs

Energy consumption estimation for the European telcos' network infrastructures in the "Business-As-Usual" (BAU) and in the Eco sustainable (ECO) scenarios, and cumulative energy savings between the two scenarios.

Source: European Commission DG INFSO report

OPEX estimation related to energy costs for the European telcos' network infrastructures in the "Business-As-Usual" (BAU) and in the Eco sustainable (ECO) scenarios, and cumulative savings between the two scenarios.

Source: R. Bolla, R. Bruschi, F. Davoli, F. Cucchietti, "Energy Efficiency in the Future Internet: A Survey of Existing Approaches and Trends in Energy-Aware Fixed Network Infrastructures," IEEE Communications Surveys & Tutorials, vol. 13, no. 2, pp. 223-244, 2nd Qr. 2011.

GRNET Cloud Computing Infrastructure: DC in Ministry of Education and Religious Affairs

- Green High-Density Data Center 16 kW/rack
- Hot and cold aisle zones
- Free cooling
- European Union Code of Conduct for Green Data Centers

GRNET Cloud Computing Infrastructure: DC in Ministry of Education and Religious Affairs

Retworking Research and Education

Samos, 03 July 2012

GRNET Cloud Computing Infrastructure: DC in Ministry of Education and Religious Affairs

- Deployment cost ~ 1.5 M euro
- 28 racks hosting servers and storage equipment
 - 7132 logical CPUs in 2011 1024 logical CPUs in 2010
 - 1800 TB storage in 2011 440 TB storage in 2010
 - Cost per core: 160 euro
 - Cost per TB/disks: 19k for SSD, ~1.5k for SAS
 - Networking costs: ~ 25% of total costs
 - Support contract costs: ~10% of total costs
 - Network connectivity costs: ~ 5000 euro/year (2x10 Gbps)
- 200 KW average energy consumption (not fully loaded)
- PUE at 2.2 in 2011 but currently estimated at 1,82
- 850 MWh in 2011

GRNET Cloud Computing Infrastructure: DC in National Hellenic Research Foundation Research Centre

- □ GÉANT PoP (63 KW) and NHRF HellasGrid node (67 KW)
- GÉANT PoP: 4 racks with servers and 14 racks with telecom equipment
- NHRF HellasGrid node: 6 racks hosting servers and storage equipment

GRNET plans for a HPC Infrastructure

□ Three logical zones:

- Zone A (HPC Compute): high density servers with high cooling requirements, but low availability requirements
- Zone B (HPC Storage): metadata/disk servers with low cooling requirements and also low availability requirements.
- Zone C (HPC Service nodes): user interfaces and other services with low cooling requirements, but high availability requirements
- Consider separating the Zone A infrastructure from Zone B and C
 - achieve increased ambient temperature by several degrees (i.e. up to 35°C).
- Performance close to 150 Tflops
- Storage is estimated to be between 300 and 500 Terabytes

GRNET plans for a HPC Infrastructure

- Deployment cost ~ 2.5M euro
- Liquid cooling solutions (inlet temp ~15-20 °C and outlet temp 6-8 °C higher)
- Zone A: max power with cooling ~350KW
- Zone B and C: ~20KW/rack
- Planned PUE close to 1.2

GRNET Green data center

Samos, 03 July 2012

GRNET Green data center

- Planned to be installed close to close to a power production hydroelectric plant facility
- Cooling based on water from a nearby river
- Water-cooled racks and circuits with heat exchangers
- Container with at least 14 racks for IT equipment
- Disaster recovery ensure business continuity of the services supported by the existing data centers
- □ Plans for PUE < 1,2! Average power: 200 KW
- □ 40% energy saving in comparison with existing data centers in Greece (PUE close to 2) → 1,17 GWh energy saving per year

GRNET Green IT activities

- ECONET low Energy COnsumption NETworks
- Green GÉANT Team
- GRNET-4: GHG audit
- GEN6 Governments enabled with IPv6
 - Greek pilot: Energy Efficiency in School Networks with IPv6
- GRNET Environmental Policy
- More at: <u>http://green.grnet.gr</u>

ECONE

 CO_{2}

GRNET Green IT: The ECONET project

- The ECONET project aims at studying and introducing adaptive technologies (dynamic adaptation and smart standby) that allow saving energy when a <u>wire-line</u> <u>network</u> device or part of it is under-utilized.
 - Access/home -> standby when users are not "connected"; idle/performance scaling when users are "connected"
 - Core/metro -> standby for unused and/or redundant HW;
 idle/performance scaling for active HW
- The final objective is to obtain an average reduction of 50-80% in energy consumption of operating networks

ECONET: The project approach Energy aware specific technologies

0 0

e-Fiscal Workshop on computing e-Infrastructure costs

Samos, 03 July 2012

0

ECONET: The project approach Green Control Framework

Autonomic and short-term on-line optimizations

Local Optimization Policies

Given:

- the actual traffic workload from input links
- Local service requirements dinamically find the best energyaware configuration

Routing & Traffic Engineering

Given:

- The traffic matrix
- Service requirements
- The energy-aware capabilities of network nodes and links

Dinamically move the traffic flows among network nodes in order to minimize the overall network consumption Operator-driven long-term off-line optimizations

Network-wide Monitoring

Given the history of measurements regarding:

- network performance
- energy consumption

The operator can explicitly plan and/or reconfigure the settings of:

- single device
- -Traffic engineering and routing.

The Network Operations Center (NOC)

Energy savings in GRNET network

Maximum power consumption for the access and core network devices in the GRNET network.

Network part	Number of devices	Type of equipment	Vendor/model	Maximum power consumption	Bo Tiranë transit vanataletut ner Serres Xaathi Komotini.so transition of the serve transition of the
Access	42	Switch	Cisco Catalyst 2970, Extreme X350, Extreme X450a	190 W, 75 W, 659 W	Fier o beran kontrol of the second of the se
Core	11	Router	Juniper T1600, Juniper MX960, Cisco 12406, 12410, 12416	~8000 W, ~3000 W, 5450 W	M. Arritada and Arada and Arad
Topological data (average figures) for the GRNET network. <i>Source</i> : Greek – Research and Technology Network.					e Plater Montance De Constantes Antonios Constantes

Network part	Redundancy degree type	Redundancy degree value (%)
Access	Redundancy degree for access devices Redundancy degree of access links	13 88
Core	Redundancy degree for core devices Redundancy degree of core links	72 71

Normalized traffic loads

Samos, 03 July 2012

Potential saving in GRNET network

Estimated energy savings for GRNET's access and core networks during the working days and holidays profiles with only DPS or Stand-by primitives and the BAU scenarios.

Source: Raffaele Bolla, Roberto Bruschi, Alessandro Carrega, Franco Davoli, Diego Suino, Constantinos Vassilakis, Anastasios Zafeiropoulos: Cutting the energy bills of Internet Service Providers and telecoms through power management: An impact analysis. Computer Networks 56(10): 2320-2342 (2012)

GÉANT Green Team – GHG audits

- Measuring and monitoring GHG emissions are essential features of a strategy to reduce such emissions.
- The GÉANT Green Team has been carrying out audits of the greenhouse gas (GHG) emissions of NRENs and the GÉANT pan-European network.
- The Green Team has adopted the ISO 14064 standard for its carbon audits.
- A common scheme or template for their networks has been adopted, to enable the audits to be carried out in a methodical and consistent manner.

GRNET GHG audit

- This is the first GHG inventory for GRNET, covering the year January 2010 to December 2010.
- This period will serve as historical base year as well as base year for this inventory.
- Data Sources

0

- Real time measurements
- Manufacturers datasheets and technical documentation
- Online database for network equipment
- Emission factors from Public Power Corporation S.A reports
- GHG emission of heating with a gasoil boiler -<u>http://www.nef.org.uk/greencompany/co2calculator.htm</u>
- Transportation input from questionnaire and emission factors from <u>http://www.greenpeace.org/greece/el/getinvolved/137368</u> /137462/ and http://www.carbonfootprint.com/calculator.aspx
- Totally for GRNET: 7865 tons CO₂-eq (3.9 GWh)

GEN6: IPv6 Pilot in Greece

Energy Efficiency in School Networks with IPv6

- Vision
 - Mobilise school communities for environmental protection
 - Raise energy awareness by interconnecting energy smart meters in selected schools intranets
 - Raise awareness in new technologies, especially IPv6
- The pilot aims to interconnect intelligent smart meters over IPv6 in 50 schools and influence the behaviour of the school communities so as to reduce energy consumption.
- Energy related information from participating schools will be recorded using smart meters, stored and processed using scalable cloud computing.

Target to reduce energy consumption in public schools at least 10% (going up to 30%)

GEN6: IPv6 Pilot in Greece

Energy Efficiency in School Networks with IPv6

- Vision
 - Mobilise school communities for environmental protection
 - Raise energy awareness by interconnecting energy smart meters in selected schools intranets
 - Raise awareness in new technologies, especially IPv6
- The pilot aims to interconnect intelligent smart meters over IPv6 in 50 schools and influence the behaviour of the school communities so as to reduce energy consumption.
- Energy related information from participating schools will be recorded using smart meters, stored and processed using scalable cloud computing.

Target to reduce energy consumption in public schools at least 10% (going up to 30%)

GRNET goes green!

Samos, 03 July 2012

0

Thank you for your attention Questions?

<u>http://green.grnet.gr</u> <u>https://twitter.com/#!/GreenGRnet</u>

Samos, 03 July 2012

