

Business and Pricing Models

Sergio Andreozzi

Strategy and Policy Manager, EGI.eu sergio.andreozzi@egi.eu

Outline

- Business Models for Federated Infrastructures
 - The role of the federator/broker
- Integration scenarios of e-infrastructure with commercial clouds
- Pricing Models for IaaS Compute services

 e-FISCAL provided a cost model and analysis of compute resources in distributed heterogeneous Infrastructures

Considerations:

- High utilization is key to maintaining economic efficiency in a market where services are becoming commodities
- A broker role is essential to facilitate demand meeting the right suppliers

Federator Models in e-Infrastructures Roles and Functions

Federator

- Provides the technology, processes and governance to enable access to an integrated set of services from autonomous organisations
- e.g. EGI.eu on a European Level NGIs on an national level

Resource Provider

 Offers access to ICT resources through service abstractions (e.g., computing power, storage)

Customer

 Negotiates the level of services and commissions the service provider or broker and may pay, doing so on behalf of a number of consumers (users)

Consumer

The person actually using the service (user)

See http://go.egi.eu/ponzd for more detailed description with reference to service management

Federator Models in e-Infrastructures #1: Independent Advisor

Services Provided

- General listing of services
- Facilitates Relationships
- Lightweight service lifecycle support

Customers Pros/Cons

- (+) Find best solution
- (-) Many-to-many relationship
- (-) Own responsibility

Resource Provider Pros/Cons

- (+) Promotion of services
- (+) Receive targeted customers
- (+) Full control of service delivery
- (-) High overheads
- (-) Complex CRM

Federator Models in e-Infrastructures #2: Matchmaker

Services Provided

 Form of Resource Allocation Mgt.

Facilitates Agreements

Active service lifecycle support

Customers Pros/Cons

- (+) Find best solution
- (+) Single point of contact for resource allocation
- (-) Many-to-many relationship

Resource Provider Pros/Cons

- (+) Promotion of services
- (+) Receive targeted customers
- (+) Balance of control over service delivery
- (+) Shared Overheads/CRM
- (-) Fragmented across borders

Federator Models in e-Infrastructures #3: One Stop Shop

Services Provided

- Service Publication
- Contract/AgreementNegotiation
- Handles financial transactions

Customers Pros/Cons

- (+) Find best solution
- (+) Single contact point for resource allocation, contracts/ SLA, payment

Resource Provider Pros/Cons

- (+) Promotion of services
- (+) Receive targeted customers
- (+) Single contact point for allocation, contracts/SLA, payments
- (+) Streamlined Overhead/CRM
- (-) 3rd party reliance

Integration of e-Infrastructures with commercial cloud providers

- Commercial cloud services are becoming appealing for the research sector
 - Especially in low-end computing
 - To access different types of resources/features or service levels
 - For more elasticity i
- The role of Cloud Service Brokers (CSB) is emerging in different sectors
 - E.g.: Helix Nebula, EGI Federated Cloud
- What are the integration scenarios that can be useful to research communities?

See http://go.egi.eu/sjsk for the results from the Venus-C project

Integration Use Case #1 Federated Infrastructure Bursting

Integration Use Case #2 Integration with External Broker

Integration Use Case #3 Single Provider Bursting

Need to Evolve Funding Streams

- Commonly, research groups receive:
 - Budget for buying resources (CAPEX) to be installed and operated by public-funded data centers
 - 2. Usage quota on public-funded infrastructures
- Option 1
 - needs to be revisited to meet the paradigm change of cloud services: CAPEX->OPEX
 - Several questions need to be investigated
 - How to reconcile the budget planning cycle for research computing to the pay-as-you go or subscription pricing models of cloud?
 - What if a budget is not renewed? Or is approved late?
 - Who should own the budget? (research group, institution)
- Option 2
 - To revisit how quota are defined

Pricing Models for IaaS

- There are different classification of pricing models to support business models definitions
- What are those suitable for laaS?
 - Usage Based Pricing
 - Subscription Pricing
 - Market Based Pricing
 - Strategy Based

Usage based

Variables	Description	Α	G	M
Resources	Price depends on type of configuration (e.g., number of core, performance, RAM size)	✓	/	✓
Features	Price depends on features (e.g., SLA, OS type)	✓	/	✓
Region	Price depends on data center/geographical location	✓	/	×
Tier-based*	Depends on segments of consumed time units	✓	/	✓

- * Used for storage A=Amazon G=Google M=Microsoft
 - No up-front costs
 - Change risk-sharing between service provider and consumer with less commitment from users
 - Can impact negatively the cash flow of the service provider

Subscription based

Variables	Description	Α	G	M
Resources	Price depends on type of configuration (e.g., number of core, performance, RAM size)	•	•	✓
Features	Price depends on features (e.g., SLA, OS type)	✓	✓	✓
Region	Price depends on data center/geographical location	✓	✓	×
Usage volume	Price depends on volume; higher volume commitment leads to lower price	•	✓	✓
Overage	Price changes if exceeding usage	✓	✓	✓

A=Amazon G=Google M=Microsoft

- Commitment from customers
- Helps suppliers in capacitiy planning

Market based

Variables	Description	A	G	M
Auction	Buyers bid in increasing increments of price	✓	×	×
Market Based	Large number of buyers and sellers indicate their preferred price, but cannot influence it individually	•	*	*

A=Amazon G=Google M=Microsoft

Strategy based

Variables	Description	Α	G	M
Penetration pricing	To target market segments very sensitive to price			
Skim pricing	To target market segments relatively insensitive to price	*	*	*

A=Amazon G=Google M=Microsoft

Considerations on Pricing Models

- IaaS has complex pricing model if compared to SaaS
 - PaaS still developing
- laaS compute has more complex pricing model than storage/network
 - richer configuration options
- With the evolution of the market, pricing models for compute should become more simple and with differentiation happening at the level of support, SLA, performance
- The emergence of federated cloud marketplace and brokers will lead to heavy price competition or service differentiation

Conclusion

- Cloud brokers are emerging in both public and private sector
- Presented three broker models for federated e-Infrastructures being considered in EGI
- Described integration scenarios with brokers from commercial sectors
- Presented pricing models for laaS compute