Addison Snell, addison@Intersect360.com

Actionable Market Intelligence for High Performance Computing

January 2013

Intersect360 Research

- HPC industry research reports: market sizing, forecasting, and technology trend analysis
- Quarterly surveys of worldwide end users since 2007
- Feature articles in partner publications
- Custom research, consulting, special studies
- Weekly podcast with HPCwire
- "Analyst Crossfire" at HPC conferences
- HPC500 user organization

Technical vs. Enterprise Computing

Technical Computing

- Top-line missions:
 - Find the oil
 - Design the minivan
 - Cure the disease
- Driven by price/ performance
- Fast adoption of new technologies, algorithms, and approaches

Enterprise Computing

- Keeps business running
 - Communicate/collaborate
 - Market and sell the product
 - Accounting, HR, finance, ...
- Driven by RAS: reliability, availability, serviceability
- Slow adoption of new technologies, algorithms, and approaches

Where We Find Technical Computing

High Performance Technical Computing (HPTC)

- Applications in science and engineering
- Top markets: academia, government labs, defense, manufacturing, bio/life science, oil/gas exploration

High Performance Business Computing (HPBC)

- Applications include trading, pricing, risk management, logistics, fraud detection, online games, analytics, ...
- Top markets: financial services, ultrascale internet, online games, retail, entertainment

HPTC and HPBC Vertical Markets

- Financial services has overtaken manufacturing as largest commercial vertical
- HPBC is >95% commercial (exceptions: Fannie Mae, Federal Reserve Bank, ...)
- Worldwide, private sector is growing faster than public sector

Growth in High Performance Computing

HPC User Budget Map Survey

- Users describe their HPC budgets
 - Size and projected growth of budget (in ranges)
 - Breakdown by category: hardware, software, staffing, facilities, services, cloud/utility, other
 - Breakdown within category e.g., Software: operating systems, middleware, developer tools, storage software, application software, transfer costs, …
- Respondents may or may not be in "acquisition years"; therefore budget distribution is a good model basis for total cost of ownership calculation

HPC User Budget Map Survey

The seven top-level spending categories were defined as follows:

- *Hardware purchases and upgrades*, including servers, storage, networks, clients, and other.
- Software purchases and upgrades, including O/S and systems software, middleware, applications, tools/libraries/compilers, in-house developed, and other.
- *Facilities spending*, including building/floor space, power consumption, cooling, and other.
- *Staffing*, including system managers, maintenance personnel, systems programmers, application programmers, user services consultants, and others.
- Services purchases, including maintenance and repair, external training, programming, and other.
- *Cloud/Utility/Outsource:* Purchases of computational capacity/capability through an external utility-based service, including raw cycles, applications support, and other.
- Other: Anything not covered above

HPC Budget Distribution by Year

A Digression on HPC and Public Clouds

Cost Models

• Barriers

Hardware Increases in All Sectors

Hardware by Sector	2007	2008	2010	2011	2012	All Years
Academic	45%	41%	39%	39%	47%	42%
Commercial	44%	41%	36%	32%	44%	38%
Government	38%	44%	37%	33%	46%	40%

- Hardware increases across all segments indicate a market change, not likely to be sampling error
- Public sector markets spend a higher proportion of budgets on hardware than commercial markets
- Academic markets spend much less on software than commercial markets in general; commercial markets vary significantly depending on their usage of licensed software

Different Software Approaches

Hardware Distribution

Category	2007	2008	2010	2011	2012	All Years
Server	65%	50%	48%	45%	50%	49%
Storage	19%	27%	27%	24%	25%	26%
Network	10%	13%	13%	14%	12%	13%
Client	6%	10%	11%	15%	12%	12%
Other	0%	1%	1%	2%	1%	1%

• Half of hardware spending goes to the compute system

- Half of the rest (one-fourth) is storage (on average)
- Remainder split between networks, clients

Facilities Distribution

Category	2007	2008	2010	2011	2012	All Years
Building/floor space	23%	32%	37%	27%	22%	29%
Power Consumption	37%	40%	37%	44%	50%	43%
Cooling	40%	28%	26%	29%	28%	28%
Other	1%	4%	8%	3%	6%	5%

Building / floor space is often a "step function." It doesn't cost much (or anything) as long as I have it. Once I have to knock down a wall, or designate new lab space, or build a new building, it can cost a lot.

Supercomputing Budgets

Budgets over \$10M/year				
Hardware	37.5%			
Software	10.7%			
Facilities	17.3%			
Staffing	25.7%			
Services	7.9%			
Cloud/Utility	0.4%			
Others	0.5%			

Budgets over \$5M/year				
Hardware	40.1%			
Software	10.6%			
Facilities	13.7%			
Staffing	25.2%			
Services	8.3%			
Cloud/Utility	1.7%			
Others	0.3%			

All Budget Sizes				
Hardware	41.3%			
Software	14.1%			
Facilities	11.2%			
Staffing	21.9%			
Services	7.7%			
Cloud/Utility	3.1%			
Others	0.7%			

Supercomputing sites spend less on hardware, software, cloud
Supercomputing sites spend more on facilities, staffing

These spending trends make intuitive sense. We can use the > \$10M budget data as a proxy for petascale spending distributions.

Planning to Buy a 100M€ Computer?

- Be prepared to also spend (over multiple years):
 - 50M€ on storage
 - 50M€ on other hardware
 - 57M€ on software
 - 46M€ on power consumption
 - 26M€ on cooling
 - 20M€ on a building
 - 137M€ on people

All costs vary by site and by installation. These are averages for modeling TCO of a supercomputer. Your mileage may vary.

- 47M€ on other stuff (services, other utilities, etc.)
- Total cost of ownership: 533M€

Future-Looking Trends (tomorrow a.m.)

- Multi-core, and its implications for:
 - Memory usage
 - Power consumption
 - System utilization
- Accelerators (e.g. GPU computing)
 - Programming models
 - System efficiency
- Big Data
- Adoption of HPC

Actionable Market Intelligence for High Productivity Computing